
Jonathan Daniel
Wellspring Worldwide

jonathan.daniel@wellspringsoftware.net



A Classic Example
function foo() {

log.begin(LOG_LEVEL, �foo starting�);
// do some stuff here
log.end(LOG_LEVEL, �foo finishing�);

}

class Log {
function begin(LOG_LEVEL, msg) {

if(LOG_LEVEL == <my_level>) {
// logging code.

}
}
function end(LOG_LEVEL, msg) {
if(LOG_LEVEL == <my_level>) {

// logging code.
}

}
}



What Is Inefficient Here?
! The Log.start and Log.end function calls must be 

added to every function in the code base
! The function foo now has an additional 2n IF 

statements are executed
! The more verbose logging code will only be used in 

development and never be executed in production
! Cluttering the code with many �extra� lines of code



So, What Can We Do About It?
! Developers would �look� at the application with a 

different point of view than an end-user
! Different types of users may want similar functionality 

but through different means

Application

Developers

End Users

�Power� Users



Let�s Visualize
! Think in terms of perspective
! Different people look at the same object in different 

ways
! The same can apply to users of an application

! Same application 
! same general functionality
! different needs

! What we need here are �Aspects�



Aspects?
! Constructs that specify events to occur within the 

code
! Weaves its execution into another set of code

! Performing additional tasks
! Changing the flow of the application



With Aspects
function foo() {

// do some stuff here
}

aspect Log {
before : foo() {

log.begin(LOG_LEVEL, msg)
}
after : foo() {

log.end(LOG_LEVEL, msg)
}

}



aspect Log {
before : foo() {

log.begin(LOG_LEVEL, 
msg)

}
after : foo() {

log.end(LOG_LEVEL, msg)
}

}

function foo() {
// do some stuff here

}

function foo() {
log.begin(LOG_LEVEL, �foo starting�);
// do some stuff here
log.end(LOG_LEVEL, �foo finishing�);

}

Weaving!



Why Do We Need Aspects?
! Alleviate cross-cutting concerns

! Refers to functionality which cannot be properly 
encapsulated into a separate module

! Application Evolution
! Allows application to grow in functionality without 

increasing code complexity
! Applications have multiple perspectives

! One application, many types of users



What Can Aspects Do?
! Execute code at specific code points

! Called: Advice
! Logging example (before, after, or even during)

! Modify existing class properties
! Called: Inter-Type Declarations
! Add new functions, properties, or methods to a class



Advice
! A Join Point Model is used to determine where code 

will be inserted (weaved)
! before,
! after, or
! �during� specified points

! Join Point Model (JPM) is a series of instructions that 
determine when advice should be executed

! JPM also allows conditional execution
! Called: point-cut
! Similar to database triggers



Advice Without Aspects
class Spam {

function foo() {
}

}
class Eggs extends Spam {

function foo() {
log::start();
parent::foo();
log::end();

}
}

! Although this way we can only have one type of 
�Aspect� per class
! Python folks would say use mix-in classes



Inter-type Declarations (ITDs)
! This allows developers to specify new members of a 

class
! Typically these are used to implement features which 

would cut across many different areas of the code base
! Example would be adding toString method to all classes

! Generally Inter-type Declarations are used to extend 
functionality of an existing class
! If the Aspect is not weaved in, the class will continue 

it�s base functionality 



An Example
String function toString() {

// returns a text representation of this object.
}

! To a Command Line user, this function should return a 
CLI compatible string, while to a Web user this function 
should return a string of formatted HTML



ITDs In Action
aspect WebDisplay {

String Object.toString() {
// display HTML code instead of CLI text.

}
}

! This way with the web aspect the developer will 
receive HTML and the CLI developer will receive 
standard text



A More �Real Life� Example
! Security.

! An application that interacts with the Internet and a 
local intranet can have two separate aspects which 
handle security

! This would allow a developer to apply a security policy 
to an application completely independent from other 
application code

! Would also allow for easier application security audits 
because all security related components would be 
located solely from within aspects



Implementations
! Preprocessor

! The aspects are �weaved� into the source code files 
before compilation creating standard non-aspect source 
code that will perform the desired tasks

! Compiler Aware
! The language�s compiler is made away of aspect 

functionality
! Run-Time

! The aspects are implemented using the languages built-
in ability to modify properties



Where to Weave?

Source
Code AspectsAspectsAspectsAspects

Executable

Weaving Compile/Interpret Run, User, Run

Preprocess
Compiler

Run-time



AspectJ
! Developed at Xerox PARC by a team lead by Gregor

Kiczales
! First �non-research oriented� implementation of AOP 

which Xerox PARC developed
! The first implementation of Aspect Oriented 

Programming, and remains the de-facto standard today



AspectJ
! Public release in 2001 

! In 2002 became an Eclipse.org project 
! http://eclipse.org/aspectj

! Created as an extension for the Java Programming 
Language

! As of 2002�s release AspectJ weaves at the byte-code level



AspectJ
! Advantages

! Does not require access to source code files for a 
developer to write aspects (anymore)

! Classes written with Aspects are binary compatible with 
classes with no aspects

! Support for most IDEs are available



phpAspect
! phpAspect looks to introduce Aspects into PHP
! Developed by William Candillion

! Development done during the 2006 and 2007 Google 
Summer of Code

! Achieves Aspect functionality by �weaving� the source 
code into new PHP files before the code is deployed

! http://phpaspect.org



phpAspect Issues
! Introduces a �preprocessor� step to a language which 

is normally interpreted
! Causes issues with debugging

! Relies on a number of PEAR modules which are still 
in beta and not considered �production-ready�

! Remember though, that it is currently at version 
Alpha 0.1.0



Spring Framework
! AOP is interception based, and all aspects are applied 

at runtime
! This means there is no load-time weaving step

! Join points can only be applied to public or protected 
methods on existing objects on join point

! http://www.springframework.org/



Spring Framework
! Less powerful than AspectJ, but less complicated
! The Spring team bases their implementation off of 

AspectJ
! Still being actively developed, so expect more AOP 

power soon



More Choices
! There are numerous Aspect Oriented Programming 

implementations available for just about every 
programming language imaginable (even COBOL)

! If one implementation doesn�t suit your needs, you 
will likely find another one which will

! In Python much of the function Aspect Oriented 
Programming can be implemented through different 
means



Issues
! While Aspect Oriented Programming is a powerful 

tool, no mainstream language has implemented �out-
of-the-box� support

! This causes developers seeking AOP functionality to 
have to look at extensions or other modules

! This can severely restrict a developer�s application to 
gain widespread adoption



Concerns
! Developer must have a greater overall sense of what is 

going on within the code base
! When aspects are weaved, unexpected side-effects 

may occur
! The risk of malicious aspects being developed and 

applied without the user or developer�s knowledge
! Someone developing an aspect may unknowingly 

override an area of code with was of the utmost 
importance



Thoughts/Discussion Topics
! How can this benefit the open source community
! What would be an open source project which would 

benefit from Aspect Oriented Programming
! Do any languages strike you as being able to greatly 

benefit from Aspect Oriented Programming �out-of-
the-box�



The End
! Thanks!
! Happy Coding


