Aspect Oriented
Programming

Jonathan Daniel
Wellspring Worldwide
jonathan.daniel@wellspringsoftware.net




A Classic Example

function foo() {
log.begin(LOG_LEVEL, “foo starting”);
// do some stuff here
log.end(LOG_LEVEL, “foo finishing”);

}

class Log {
function begin(LOG_LEVEL, msg) {
if(LOG_LEVEL == <my_ level>) {
// logging code.
}
}
function end(LOG_LEVEL, msg) {

if(LOG_LEVEL == <my_level>) {
// logging code.
}

}
}



What Is Inefficient Here?

* The Log.start and Log.end function calls must be
added to every function in the code base

* The function foo now has an additional 2n IF
statements are executed

* The more verbose logging code will only be used in
development and never be executed in production

¢ Cluttering the code with many “extra” lines of code



So, What Can We Do About It?

* Developers would “look” at the application with a
different point of view than an end-user

* Different types of users may want similar functionality
but through different means

End Users

Developers
€« »
Power” Users




Let’s Visualize

* Think in terms of perspective

* Different people look at the same object in different
ways
* The same can apply to users of an application
e Same application
e same general functionality

e different needs

* What we need here are “Aspects”



Aspects?

* Constructs that specify events to occur within the
code

* Weaves its execution into another set of code
e Performing additional tasks
e Changing the flow of the application



With Aspects

function foo() {
// do some stuff here

aspect Log {
before : foo() {
log.begin(LOG_LEVEL, msg)
}
after : foo() {
log.end(LOG_LEVEL, msg)



aspect Log {
before : foo() {
log.begin(LOG_LEVEL,
msg)

}
function foo() { after : foo() {

// do some stuff here log.end(LOG_LEVEL, msg)
} }

Weaving!

function foo() {
log.begin(LOG_LEVEL, “foo starting”);
// do some stuff here

log.end(LOG_LEVEL, “foo finishing”);



Why Do We Need Aspects?

* Alleviate cross-cutting concerns

 Refers to functionality which cannot be properly
encapsulated into a separate module

* Application Evolution

e Allows application to grow in functionality without
increasing code complexity

* Applications have multiple perspectives
e One application, many types of users



What Can Aspects Do?

* Execute code at specific code points
e Called: Advice
e Logging example (before, after, or even during)

* Modify existing class properties
e Called: Inter-Type Declarations
e Add new functions, properties, or methods to a class



Advice

* A Join Point Model is used to determine where code
will be inserted (weaved)

e before,
e after, or

e “during” specified points
* Join Point Model (JPM) is a series of instructions that
determine when advice should be executed

* JPM also allows conditional execution
e Called: point-cut
e Similar to database triggers



Advice Without Aspects

class Spam {
function foo() {

}

}
class Eggs extends Spam {

function foo() {
log::start();
parent::foo();
log::end();
}
}

* Although this way we can only have one type of
“Aspect” per class

e Python folks would say use mix-in classes



Inter-type Declarations (ITDs)

* This allows developers to specify new members of a
class

e Typically these are used to implement features which
would cut across many different areas of the code base

e Example would be adding toString method to all classes

* Generally Inter-type Declarations are used to extend
functionality of an existing class

o If the Aspect is not weaved in, the class will continue
it’s base functionality



An Example

String function toString() {

// returns a text representation of this object.

¥

* To a Command Line user, this function should return a
CLI compatible string, while to a Web user this function
should return a string of formatted HTML



ITDs In Action

aspect WebDisplay {
String Object.toString() {
// display HTML code instead of CLI text.

¥
¥

* This way with the web aspect the developer will
receive HTML and the CLI developer will receive
standard text



A More “Real Life” Example

® Security.

e An application that interacts with the Internet and a
local intranet can have two separate aspects which
handle security

e This would allow a developer to apply a security policy
to an application completely independent from other
application code

 Would also allow for easier application security audits
because all security related components would be
located solely from within aspects



Implementations

* Preprocessor

e The aspects are “weaved” into the source code files
before compilation creating standard non-aspect source
code that will perform the desired tasks

* Compiler Aware

e The language’s compiler is made away of aspect
functionality

® Run-Time

e The aspects are implemented using the languages built-
in ability to modify properties



e o e P -—_ﬁ___

T

Where to Weave?




Aspect)

» Developed at Xerox PARC by a team lead by Gregor
Kiczales

- First “non-research oriented” implementation of AOP
which Xerox PARC developed

» The first implementation of Aspect Oriented
Programming, and remains the de-facto standard today



Aspect)

o Public release in 2001

- In 2002 became an Eclipse.org project
- http://eclipse.org/aspect;j

« Created as an extension for the Java Programming
Language

» As of 2002’s release Aspect] weaves at the byte-code level



Aspect)

* Advantages

* Does not require access to source code files for a
developer to write aspects (anymore)

e Classes written with Aspects are binary compatible with
classes with no aspects

e Support for most IDEs are available



phpAspect

* phpAspect looks to introduce Aspects into PHP
* Developed by William Candillion

e Development done during the 2006 and 2007 Google
Summer of Code

* Achieves Aspect functionality by “weaving” the source
code into new PHP files before the code is deployed

* http://phpaspect.org



phpAspect Issues

* Introduces a “preprocessor” step to a language which
is normally interpreted

e Causes issues with debugging

® Relies on a number of PEAR modules which are still
in beta and not considered “production-ready”

* Remember though, that it is currently at version
Alpha o.1.0



Spring Framework

* AOP is interception based, and all aspects are applied
at runtime

e This means there is no load-time weaving step

* Join points can only be applied to public or protected
methods on existing objects on join point

* http://www.springframework.org/



Spring Framework

* Less powerful than Aspect], but less complicated

* The Spring team bases their implementation off of
Aspect]

* Still being actively developed, so expect more AOP
power soon



More Choices

* There are numerous Aspect Oriented Programming
implementations available for just about every
programming language imaginable (even COBOL)

* If one implementation doesn’t suit your needs, you
will likely find another one which will

* In Python much of the function Aspect Oriented
Programming can be implemented through different
means



Issues

* While Aspect Oriented Programming is a powerful
tool, no mainstream language has implemented “out-
of-the-box” support

* This causes developers seeking AOP functionality to
have to look at extensions or other modules

* This can severely restrict a developer’s application to
gain widespread adoption



Concerns

* Developer must have a greater overall sense of what is
going on within the code base

* When aspects are weaved, unexpected side-effects
may occur

e The risk of malicious aspects being developed and
applied without the user or developer’s knowledge

e Someone developing an aspect may unknowingly
override an area of code with was of the utmost
importance



Thoughts/Discussion Topics

* How can this benefit the open source community

* What would be an open source project which would
benefit from Aspect Oriented Programming

* Do any languages strike you as being able to greatly
benefit from Aspect Oriented Programming “out-of-
the-box”




| The End

* Thanks!

* Happy Coding



